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1. INTRODUCTION

Symmetric functions are very often studied in combinatorics, especially the symmetric
functions called Schur functions. They have connections to the representation theory
of certain groups, and allows to describe naturally varieties over certain vector spaces.
We will focus in this articles on the Schur functions, their multiplication and their K -
theoric generalisation to the Grothendieck polynomials.

We also describe Knuth equivalence classes and K -Knuth equivalence classes and some
result of generalising them to the notion of domino tableaux.

The combinatoric point of view of the symmetric functions is based on important com-
binatoric objects that we will describe here: partitions and Young tableaux. No previous
knowledge in symmetric functions or combinatorics should be needed to read this ar-
ticle.

2. SYMMETRIC FUNCTIONS, PARTITIONS AND YOUNG TABLEAUX

We will start by making some general reminders on symmetric functions, partitions,
Young tableaux and Schur functions.

A reader comfortable with these notions may want to start directly at the section 3,4 or
5. The next four sections are based on the sections 7.1 to 7.12 in [1], we refer the reader
to this excellent reference for more details.

2.1. Symmetric functions.

Definition 2.1. Let x = (x1, x2, x3, ..., xn), be a set of variables, for n PN.

A symmetric function is a polynomial or a formal power series

f (x) =
ÿ

α

cαxα,

where

‚ cα PR, for R a commutative ring with an identity.

‚ α= (α1,α2,α3, ...,αn), for αi PN.

‚ xα = xα1
1 xα2

2 xα3
3 ...xαn

n

‚ @σ P §n , the symmetric group, f (xσ(1), xσ(2), ..., xσ(n)) = f (x1, x2, ..., xn).

Example 2.2. f (x, y, z) = x + y + z +x2 y + y2x +x2z + y2z + z2x + z2 y +x3 y3z3 is a sym-
metric function.
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Counter-example 2.3. g (x, y) = x +x2+ y2+x y +x2 y3 is not a symmetric function. We
would need to add the following terms for g to be a symmetric function : y and x3 y2.

Definition 2.4. A homogeneous symmetric function of degree n is a symmetric func-
tion with all its monomes having degree n.

In other words, if such a symmetric function is given by f (x) =ř

α cαxα, then

@α= (α1,α2,α3, ...),
ÿ

i

αi = n.

Example 2.5. f (x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 + x5 is a homogeneous symmetric
function of degree 1, in 5 variables.

Example 2.6. g (x, y, z) = x2 y+x2z+y2x+y2z+z2x+z2 y+x y z is a homogeneous sym-
metric function of degree 3, in 3 variables.

In general, when speaking of symmetric functions, xis an "infinite" set of variables. It
means that x = (x1, x2, x3, ...) and f (x) is a formal power series.

We then suppose that n PN, permuting any n variables always gives back f (x).

Example 2.7. Let x = (x1, x2, x3, . . .), and

f (x) =
ÿ

i

3x4
i +

ÿ

i‰ j

x2
i x5

j ,

where i PN. Then f (x) is a homogeneous symmetric function of degree 5, in an infinity
of variables.

We denote the set of homogeneou symmetric functions of degree n over R = Q by
Λn .

Let’s note that the homogeneous symmetric functions of degree 0 sont are simply the
elements of R =Q, and that if f PΛn and g PΛm , then f ¨ g PΛn+m .

We denote the set of symmetric functions over R =Q byΛ. We have thatΛ=Λ0‘Λ1‘

Λ2‘ ....

Indeed, if f PΛ, then f = f0 + f1 + f2 + ... where fi PΛ
n .

Λ is in fact an algebra with identity 1 PΛ0, in other words a ring with operations com-
patible with the structure ofQ-vector space. One of the goals of the study of symmetric
functions is to describe "good" basis ofΛ.
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2.2. Partitions and Young tableaux. To describe the best known bases of Λ, we first
have to introduce partitions and Young tableaux.

Definition 2.8. Let λ= (λ1,λ2, ...,λk ) for λi PN. We say that λ is a partition of n if

(1) |λ| =λ1 +λ2 + ...+λk = n and

(2) λ1ěλ2ě ...ěλk > 0.

We then denote λ$ n, and we say that the length ofλis the number of parts of λ, which
we denote `(λ) = k.

Example 2.9. (1) λ= (2,1,1) is a partition of 4.

(2) λ= (6,5,5,4,2,1,1,1,1) is a partition of 26.

(3) λ= (3,4,2,2,1) is NOT a partition.

Notation 2.10. The set of partitions of n is denoted Par (n), and the set of partitions is
denoted Par .

Given two partitions, it can be useful to know if one if "greater" than the other. This
dominance order is defined as follows:

Definition 2.11. Let λ, µ P Par (n). We say that λÉµ if

λ1 +λ2 + ...+λi Éµ1 +µ2 + ...+µi @i ě 1.

We can also want to know if one of two given partitions is included into the other. This
inclusion order is defined as follows:

Definition 2.12. Let λ, µ P Par . We say that λĎµ if λi Éµi @i ě 1.

Now that we have introduced partitions, we can move on to describing Young diagrams
and Young tableaux.

Definition 2.13. Let λ be a partition of n. A Young diagram of shape λ is a left justified
empty tableau with n cells ordered such that the i th line contains λi cells.

Example 2.14. Let λ= (5,3,3,1). The Young diagram of shape λ is

Dλ =

4



In this article, we use the english notation. In this notation, the lines are written from
top to bottom, as in the french notation, lines are written from bottom to top. A reader
wishing to study symmetric functions or tableaux will probably encounter both, as they
exist simultaneously in different books and articles, depending on the preferences of
the authors.

An tableau made of empty cells is a pretty sad mathematical object, we then wish to fill
it with integers in the following way.

Definition 2.15. Let λ be a partition of n. A (semi-standard) Young tableau of shape
λis the filling of a Young diagram with positive integers such that:

‚ Lines are weakly incresing from left to right.

‚ Columns are strictly increasing form top to bottom.

Example 2.16. Let λ= (4,2,1,1).The following tableau is a Young tableau of shape λ.

T = 1 2 2 4

2 4

3

5

We will now introduce some vocabulary associated with Young tableaux.

Definition 2.17. Let λ be a partition of n and T be a Young tableau of shape λ.

We denote the shape of T by sh(T ) = λ, and we say that the size of T is the number of
cells in T , denoted by |T | = |λ| = n.

Definition 2.18. We say that a Young tableau is strictly increasing if all its lines are
strictly increasing from left to right.

Example 2.19. 1 3 4 5

2 5

is a strictly increasing Young tableau.

Definition 2.20. We say that a Young tableau T is standard if its cells are filled by
{1,2,3, . . .n}, where n is the size of T .

Example 2.21. 1 2 5 6

3 4

is a standard Young tableau.
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Definition 2.22. Let λ,µ, be two partitions such that µĎ λ. The skew Young diagram
of shape λ/µ is the Young diagramme de Young of shape λ, of which the cells corre-
sponding to the Young diagram of shape µ have been removed. A skew Young tableau
of shapeλ/µ a filling of the skew Young diagram of shapeλ/µ such that rows are weakly
increasing and columns are strictly increasing. Similarly to Young tableaux, we can de-
scribe standard skew tableaux and increasing skew tableaux.

Example 2.23. The following tableau is a skew Young tableau of shape (5,3,3,2,1)/(3,2,2,1).

5

9

11

12

13 14

Definition 2.24. Each cell of a Young tableau is crossed by a unique diagonal Dk of
equation Dk = x´k, for k PN.

Example 2.25. The following figure represents a Young tableau with its diagonals.

1

2

1

3

5 6

D1

D0

D´1

D´2

D´3

Definition 2.26. Let T be a Young tableau. There are two main ways to read the entries
of T :

(1) The reading word of T , or word of T , is the sequence of entries obtained by
reading the lines of T from left to right, starting by the bottom line and reading
the lines upwards.

(2) The diagonal reading of T is the sequences of entries read along the diagonals
from top to bottom, starting with the leftmost diagonal and with " / " between
the readings of different diagonals.
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Example 2.27. Let T = 1 1 1 2 3 3 4

2 3 3 4

4 5 5

5

.

The reading word of T is 545523341112334. The diagonal reading of T is 5/4/25/135/13/14/2/3/3/4.

Remark 2.28. These two types of readings allow to find back the original tableau di-
rectly from the word associated with the tableau.

We will now put these new notions of partitions and Young tableaux to use, and use
them to describe symmetric functions. To do this we need the following notation.

Definition 2.29. Let λ be a partition of n and T a Young tableau of shape λ.

We say that the type of T is the vecteur α(T ) = (α1(T ),α2(T ), ...), where αi (T ) indicates
the number of entries of value i in T .

If x = (x1, x2, x3, ...), then we denote xT = xα(T ) = xα1(T )
1 xα2(T )

2 xα3(T )
3 ...

Example 2.30. Let T = 1 2 2 4

2 4
. Then

α(T ) = (1,3,0,2,0,0, ...), and

xT = x1x3
2 x2

4 .

2.3. Best known bases of the set of symmetric functions, Λ. In this section, we will
describe the classical bases of the set of symmetric functions,Λ.

2.3.1. Monomial symmetric functions.

Definition 2.31. Let λ be a partition. The monomial symmetric function associated
to λ is defined by

mλ :=
ÿ

α

xα

where α = (α1,α2, ...) runs over the set of distinct permutations of the coordinates of
λ= (λ1,λ2, ...).

Example 2.32. If λ=H= (0,0,0,0, ...), then mH := x(0,0,0,0,...) = x0
1 x0

2 ... = 1.

If λ= (1) = (1,0,0,0, ...), then m1 :=ř

i x(0,0,...,0,1,0,...) =ř

i xi .

If λ= (2,1) = (2,1,0,0, ...), then m2,1 :=ř

i< j x2
i x j +

ř

i< j xi x2
j .
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It is relatively easy to prove that monomial symmetric functions form a basis of the set
of symmetric functions. We refer the reader to [1] for the details of this proof. However
it is not an equivalently easy proof for all bases of Λ. In fact, the strategy for showing
that a basis is actually a basis of Λ is generally to find a change of basis between these
symmetric functions and the monomial symmetric functions. We refer the reader again
to [1] for the complete proofs that the bases that we will describe further on are really
bases ofΛ.

2.3.2. Elementary symmetric functions.

Definition 2.33. Let n P N. The elementary symmetric function associated to n is
defined by

en := m1n =
ÿ

i1<i2<...<in

xi1 xi2 ...xin =
ÿ

β

xβ

where β runs over the set of all fillings of the "column" Young diagram of height n.

Definition 2.34. Let λ = (λ1,λ2, ...) $ n. The elementary symmetric function associ-
ated to λ is

eλ = eλ1 eλ2 ...

Example 2.35. Letλ= (3,2,1,1)$ 7. Let’s restrain ourselves to the case with 3 variables.

We have that e3 := m13 =ř

β3
xβ3 whereβ3 runs over the set of all fillings of the "column"

Young diagram of height 3.

We have a single possible filling with three variables:

1

2

3

So e3(x1, x2, x3) = x1x2x3.

We have that e2 := m12 =ř

β2
xβ2 whereβ2 runs over the set of all fillings of the "column"

Young diagram of height 2.

We have two possible fillings with three variables:

1

2

2

3
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So e2(x1, x2, x3) = x1x2 +x2x3.

Finally, we have that e1 := m1 =
ř

β1
xβ1 , where β1 runs over the set of all fillings of the

"column" Young diagram of height 1.

We have three possible fillings with three variables:

1 2 3

So e1(x1, x2, x3) = x1 +x2 +x3.

Finally, we have the following equation for eλ(x1, x2, x3).

eλ(x1, x2, x3) = e3(x1, x2, x3)e2(x1, x2, x3)e1(x1, x2, x3)e1(x1, x2, x3)

= (x1x2x3)(x1x2 +x2x3)(x1 +x2 +x3)(x1 +x2 +x3)

= 3x3
1 x2

2 x2
3 +3x2

1 x3
2 x2

3 +3x2
1 x2

2 x3
3 +2x3

1 x3
2 x3 +2x1x3

2 x3
3

+x2
1 x4

2 x3 +x4
1 x2

2 x3 +x1x2
2 x4

3 +x1x4
2 x2

3

2.3.3. Homogeneous symmetric functions.

Definition 2.36. Let n P N. The homogeneous symmetric function associated to n is
defined by

hn :=
ÿ

λ$n

mλ =
ÿ

i1Éi2É...Éin

xi1 xi2 ...xin =
ÿ

β

xβ

where β runs over the set of all fillings of the "line" Young diagram of length n.

Let’s note that hn gives us the sum of all monoms of degree n.

Definition 2.37. Let λ= (λ1,λ2, ...)$ n. The homogeneous symmetric function asso-
ciated to λ is

hλ = hλ1 hλ2 ...

Example 2.38. Let λ = (3,2,1,1) $ 7. Let’s restrain ourselves again to the case with 3
variables.

We have that h3 :=ř

β3
xβ3 whereβ3 whereβ3 runs over the set of all fillings of the "line"

Young diagram of length 3.

There are many possible fillings with three variables:

1 1 1 1 1 2 1 2 2 1 2 3 1 1 3 1 3 3 2 2 2

2 2 3 2 3 3 3 3 3
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So h3(x1, x2, x3) = x3
1 +x3

2 +x3
3 +x2

1 x2 +x1x2
2 +x2

1 x3 +x1x2
3 +x2

2 x3 +x2x2
3 +x1x2x3.

We have that h2 :=ř

β2
xβ2 whereβ2 whereβ2 runs over the set of all fillings of the "line"

Young diagram of length 2.

There are six possible fillings with three variables:

1 1 1 2 1 3 2 2 2 3 3 3

So h2(x1, x2, x3) = x2
1 +x2

2 +x2
3 +x1x2 +x1x3 +x2x3.

Finally, we have that h1 =
ř

β1
xβ1 , where β1 runs over the set of all fillings of the "line"

Young diagram of length 2.

There are three possible fillings with three variables:

1 2 3

So h1(x1, x2, x3) :=ř

iP{1,2,3} xi = x1 +x2 +x3.

Fanally, we have the following equation for hλ(x1, x2, x3)

hλ(x1, x2, x3) = h3(x1, x2, x3)h2(x1, x2, x3)h1(x1, x2, x3)h1(x1, x2, x3)

= (x3
1 +x3

2 +x3
3 +x2

1 x2 +x1x2
2 +x2

1 x3 +x1x2
3 +x2

2 x3 +x2x2
3 +x1x2x3)

¨ (x2
1 +x2

2 +x2
3 +x1x2 +x1x3 +x2x3) ¨ (x1 +x2 +x3) ¨ (x1 +x2 +x3)

2.3.4. Power sum symmetric functions.

Definition 2.39. Let n PN. The power sum symmetric function associated to n is de-
fined by

pn := mn =
ÿ

i

xn
i .

Definition 2.40. Let λ= (λ1,λ2, ...)$ n, the power sum symmetric function associated
to λ is

pλ = pλ1 pλ2 ...

Example 2.41. Let λ = (3,2,1,1) $ 7. Let’s restrain ourselves again to the case with 3
variables.

We have that p3(x1, x2, x3) := m3(x1, x2, x3) =ř

iP{1,2,3} x3
i , so p3(x1, x2, x3) = x3

1 +x3
2 +x3

3 .

We have that p2(x1, x2, x3) := m2(x1, x2, x3) =ř

iP{1,2,3} x2
i , so p2(x1, x2, x3) = x2

1 +x2
2 +x2

3 .

We have that p1(x1, x2, x3) =ř

iP{1,2,3} xi , so p1(x1, x2, x3) = x1 +x2 +x3.
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Finally, we have the following equation for pλ(x1, x2, x3).

pλ(x1, x2, x3) = p3(x1, x2, x3)p2(x1, x2, x3)p1(x1, x2, x3)p1(x1, x2, x3)

= (x3
1 +x3

2 +x3
3)(x2

1 +x2
2 +x2

3)(x1 +x2 +x3)(x1 +x2 +x3)

2.3.5. Relations between the bases. One of the interests of studying the bases of Λ is to
study the matrix of change of basis between two given bases, which allows to write
one element of the first basis in term of the elements of the second basis, and vice
versa.

In general, it is easier to use the power sum symmetric functions to express the elements
of other bases, by using the following two relations.

Proposition 2.42.

hn =
ÿ

λ$n

z´1
λ

pλ

en =
ÿ

λ$n

ελz´1
λ

pλ

where zλ = 1m1 m1!2m2 m2!... for mi = #i in λ, and ελ = (´1)n´l (λ).

We refer the reader to [1] for other relations between bases of the set of symmetric func-
tionsΛ.

3. SCHUR FUNCTIONS

Schur functions form another basis ofΛ, and are especcially interesting since they have
different definitions in distinct mathematical fields. We refer the reader to [10] for fur-
ther details.

To start with, they can be entirely be described combinatorically, which is the definition
we will be focussing on in this article.

They also have a definition in terms of representation theory, since the Schur functions
have strong connections to the representation theory of the symmetric group Sn and of
other related groups. In fact, they are the characters of polynomial irreducible repre-
sentations of the general linear groups.

Similarly, Schur functions have a geometric definition in Schubert theory. This theory
is a branch of algebraic geometry that was introduced in the nineteen century by Her-
mann Schubert. In this theory, a Grassmanian variety is defined to be a variety whose
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points are subspaces of a given vector space, usually Cn . The Schur functions then rep-
resent the Schubert classes in the cohomology ring of the Grassmannians Gr (k,Cn) of
k-planes in Cn .

There are a few other definitions of the Schur functions, but we won’t describe them
here. Let’s now give the combinatorical definition of Schur functions.

Definition 3.1. Let λ a partition, and x = (x1, x2, . . . , xn) for n P N. The Schur function
associated to λ in x is given by the following expression.

sλ(x) =
ÿ

T

xT

where T runs over the set of Young tableaux of shape λ.

When x = (x1, x2, x3, . . .), we simply denote sλ(x) by sλ.

Example 3.2. Let’s consider the Young tableaux of shape λ = (2,1) with largest entry
smaller or equal to 3.

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3

Since the largest entry appearing in the tableaux will be 3, then all terms of the Schur
function spanning over these tableaux will be composed uniquely of x1’s, x2’s or x3’s,
and is then denoted s(2,1)(x1, x2, x3). We have the following equation for s(2,1)(x1, x2, x3).

s(2,1)(x1, x2, x3) = x2
1 x2 +x2

1 x3 +x1x2
2 +2x1x2x3 +x1x2

3 +x2
2 x3 +x2x2

3

= m(2,1)(x1, x2, x3)+2m(1,1,1)(x1, x2, x3)

In fact, since there can’t be more than three variables in any given term in s(2,1), we then
have the following equation for s(2,1).

s(2,1) = m(2,1) +2m(1,1,1)

Theorem 3.3. For all partition λ, the Schur function associated to λ, sλ, is a symmetric
function.

In particular, for |λ| = n,

sλ =
ÿ

α

kλ,αxα =
ÿ

µ$n

kλ,µmµ,

where kλ,α is the number of Young tableaux of shape λ and type α.
12



Theorem 3.4. The Schur functions sλ with λ P Par (n) form a basis of Λn , and therefore
the set

{sλ | λ P Par }

forms a basis ofΛ.

Theorem 3.5 (Cauchy identity).
ź

i , j

(1´xi y j )´1 =
ÿ

λ

sλ(x)sλ(y)

Proof. The proof of this theorem is based on the RSK algorithm. This algorithm estab-
lishes a bijection between the N -matrices with finite non-zero entries and such that
the vector of the sums of entries in each rows, r ow(A) is α, and the vector of the sum of
entries in each column is β, and pairs of Young tableaux (P,Q) such that t y pe(P ) =α et
t y pe(Q) =β. We refer the reader to [?] for a complete description of the RSK algorithm.

4. MULTIPLICATION OF THE SCHUR FUNCTIONS

In representation theory and algebraic geometry, it can be useful to have a formula to
describe the multiplication of two Schur function, else than the direct multiplication of
two power sums.

In particular, for µ,ν$ n, how can we write sµsν in terms of the Schur basis?

The Littlewood-Richardson provides the coefficients of such an expression. In this sec-
tion, we will describe another combinatorical interpretation of these coefficients when
the multiplication involves particular partitions. In order to understand well this the-
orem, we will first introduce the notions of 2-quotient, 2-core and domino tableaux.
This whole section is based on the background material found in [2].

4.1. 2-quotient and 2-core.

Definition 4.1. Let λ$ n. The 2-quotient of λ is a pair of partitions (µ,ν) obtained in
the following way:

(1) Let L := (l1, l2, ..., ll (λ)), where li =λi + l (λ)´ i for i P {1,2, ..., l (λ)}.

(2) Let M be obtained from L by replacing succesively from right to left the even
numbers by 0,2,4, ... and uneven numbers by 1,3,5, ...

(3) We substract the even components of L by the even components of M and we
divide by to to obtain µ.

13



(4) We substract the uneven components of L by the uneven components of M and
we divide by to to obtain ν.

Example 4.2. Let λ= (4,2,2,1,1,1). Here the length of λ is `(λ) = 6. We then have

(1) L = (4+6´1,2+6´2,2+6´3,1+6´4,1+6´5,1+6´6) = (9,6,5,3,2,1)

(2) M = (7,2,5,3,0,1)

(3) µ= 1
2 ((6,2)´ (2,0)) = 1

2 (4,2) = (2,1)

(4) ν= 1
2 ((9,5,3,1)´ (7,5,3,1)) = 1

2 (2,0,0,0) = (1,0,0,0)

We then have that the 2-quotient of λ is ((2,1), (1)).

Definition 4.3. Let λ$ n, the 2-core of λ is obtained by succesively removing dominos
(rectangles 2ˆ 1 or 1ˆ 2) from the Young diagram of shape λ if there are no cells to the
right or under that domino.

The Young diagram left when no such domino can be removed is called the 2-core of λ.

Remark 4.4. It has been shown that the 2-core is independant of the order in which
the dominos are removed. Also, the 2-core is always of reverse staicase shape. In other
words, it has shape (k,k´1,k´2, . . . ,2,1) for k PN.

Example 4.5. Let λ = (5,3,3,2,1,1,1). We can obtain the 2-core of λ in the following
way:

Ñ Ñ Ñ Ñ

4.2. Domino tableaux.

Definition 4.6. If λ $ n has 2-core ∅, then it is possible to pave λ with dominos. We
then say that λ is pavable.

Definition 4.7. A domino tableau of shape λ is the filling of a domino paving of λ by
positive integers such that:

‚ Lines are weakly increasing from left to right.

‚ Columns are strictly increasing from top to bottom.

Example 4.8. Let λ= (5,4,2,1). The following figure is a paving of λ.
14



The following figure is a domino tableau of shape λ and of type (2,1,1,0,1,1,0,0,0, ...)
with such a paving.

1

2

1

3

5

6

Similarely to Young tableaux, it is possible to read the entries in a domino tableau. Be-
cause of the particular positions of the dominos in a tableau, we will privilege the diag-
onal reading for domino tableaux.

Definition 4.9. Each domino in a domino tableau is crossed by a unique diagonal D2k

of equation Dk =´x´2k.

Definition 4.10. We call diagonal reading of a domino tableau the integer sequence
read along the diagonals from top to bottom, starting by the leftmost diagonal. We
separate the entries on distinct diagonals by "/" .

Example 4.11. The following figure represents the domino tableau of the previous ex-
ample with its diagonals.

1

2

1

3

5

6

D0

D2

D´2

D´4

The diagonal reading of this tableau is 2 / 1,3 / 1,6 / 5.

4.2.1. Types of dominos. We remark that depending on how the diagonal D2k cuts a
domino, we can distinguish two types of dominos:

(1) Type 1 : dominos with the small triangle defined by the cutting of the diagonal
pointing upwards.
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(2) Type 2: dominos with the small triangle defined by the cutting of the diagonal
pointing downwards..

4.3. Bijection.

Theorem 4.12. Let λ be a pavable partition with 2-quotient (µ,ν). The set of domino
tableaux of shape λ and the set of pairs of Young tableaux of shape (µ,ν) are in bijection.

Definition 4.13. We say that two tableaux t1 and t2 are of shape (µ,ν) if t1 and t2 are
respectivelly of shape µ and ν.

Proof. The theorem 4.12 is proved by describing explicitely the algorithm Γ that sends
a domino tableau to the associated pair of Young tableaux, and the inverse algorithm
Γ´1. Let’s note that not all pairs of Young tableaux are associated to a domino tableau.
We refer the reader to [2] for more historic background about the algorithm.

Γ consists on considering the diagonal reading of entries in type 1 dominoes (resp. type
2 dominoes) only. This diagonal reading corresponds to the diagonale reading of the
associated Young tableau t1 (resp. t2).

Let’s show an example of the application of the algorithm to the domino tableau T .

T =

1

2 2

2 3
4

4

3

4 D0

D´2

D´4

D2

D4

Type 1

Type 2

D0

D´2

D´4

D2

D4

D0

D´2

D´4

D2

D4

2 2

3

4

1 3 4

2 4

2 2

3

4

= t1

1 3 4

2 4
= t2
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We leave it to the reader to verify that the 2-quotient of sh(T ) = (6,4,4,2,1,1) is ((2,1,1), (3,2)),
the shape of (t1, t2).

The inverse algorithm, Γ´1, consists on constructing recursively the domino tableau
of shape λ associated to a pair of Young tableaux (t1, t2) of shape (µ,ν), where (µ,ν) is
the 2-quotient of λ. At any step, we have a pair of Young tableaux (t (i )

1 , t (i )
2 ), of shape

(µ(i ),ν(i )), and the associated domino tableau T (i ), of shape λ(i ). We start the algorithm
with µ(0) = ν(0) = λ(0) =∅. The algorithm stops when (t (i )

1 , t (i )
2 ) = (t1, t2). Then we have

that the domino tableau associated to (t1, t2) is T (i ).

Let’s describe the i th step of the algorithm.

Let ui be the smallest value appearing in (t1, t2) that does not appear in (t (i´1)
1 , t (i´1)

2 ).

We add to (t (i´1)
1 , t (i´1)

2 ) all cells of (t1, t2) with value ui , while preserving their original

position. We get a new pair of tableaux (t (i )
1 , t (i )

2 ) of shape (µ(i ),ν(i )).

To construct the domino tableau T (i ) of shape λ(i ), we follow the procedure described
hereafter, starting with the leftmost diagonal.

For all cells in t (i )
1 (resp. t (i )

2 ) containing the value ui on diagonal Dk , we add to T (i´1)

a domino of type 1 (resp. type 2) with entry ui on the corresponding diagonal D2k . We
then get the associated domino tableau T (i ), of shape λ(i ).

Here is an example of the application of the algorithm to the pair of Young tableaux

(t1, t2) =

 2 2

3

4

, 1 3 4

2 4

.

(1)

(
∅, 1

)
Ñ 1 ;

(2)

 2 2 , 1

2

Ñ 1

2 2

2

;

(3)

 2 2

3
, 1 3

2

Ñ 1

2 2

2

3

3

;

(4)

 2 2

3

4

, 1 3 4

2 4

Ñ
1

2 2

2

3

3
4

4

4

.

The reader can notice that we found back the tableau T from the previous example.

The previous bijection is translated as follows into the symmetric function language:
17



Theorem 4.14. Let λ be a partition with 2-quotient (µ, ν). Then

sµsν =
ÿ

T

xT

where T runs over the set of domino tableaux of shape λ.

5. K-THEORY

K -theory allows us to generalize the concept of Schur functions to the stable Grothendieck
polynomials. The stable Grothendieck polynomials play an equivalent role than the
one of Schur functions in the K -theory cohomology ring of the Grassmanians. Roughly
speaking, Gλ represents the class of the structure sheaf of a Schubert variety.

Grothendieck polynomials have first been introduced as such by Lascoux and Schützen-
berger, in 1982. Later on, they have been described from the combinatorial point of
view by Fomin and Kirillov in 1996, and the combinatorial definition we use in this sec-
tion has been introduced by Buch in 2002.

Buch also studied a bialgebra spanned by the stable Grothendieck polynomials. By tak-
ing the completion of that bialgebra, one can define a Hopf algebra. We refer the reader
to [9] for further description of the links between the Grothendieck polynomials and
the K -theory cohomology ring of the Grassmanians, and for further description on this
Hopf algebra.

5.1. Stable Grothendieck polynomial Gλ. This section is essentially based on [3] and
discussions with the author Rebeccas Patrias. We refer the reader to [5] for more details
on the history of Grothendieck polynomials.

Let’s start by defining an order over sets.

Definition 5.1. Let A,B be finite sets of positive integers. Let’s define an integer set
order, denotedŸ, where AŸB if and only if max(A) < min(B).

Definition 5.2. Let λ be a partition. A set-valued Young tableau of shapeλ is a filling of
the Young diagram of shape λ with finite, non empty sets of positive integers such that

(1) entries are weakly increasing along the rows from left to right in relation toŸ.

(2) entries are increasing along the columns from top to bottom in relation toŸ.

Then the polynomial xT associated with a set-valued Young tableau T is

xT = xα1(T )
1 xα2(T )

2 xα3(T )
3 . . . ,
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where αi (T ) is the number of occurrences of i in T .

Example 5.3. T = 1,3 3 6,7

4
is a set-valued Young tableau, and

xT = x1x2
3 x4x6x7.

Definition 5.4. Let λ be a pavable partition. A set-valued domino tableau of shapeλ is
a paving of λ by dominoes filled with finite, non empty sets of positive integers, ordered
by the integer set order such that

(1) Entries are weakly incresing along the rows from left to right.

(2) Entries are increasing along the columns from top to bottom.

Remark 5.5. Let T be a set-valued tableau. If we pick any representative of a set for
each set filling T , then we have a semi-standard tableau.

We can now define the generalization of the Schur functions sλ to the stable Grothendieck
polynomial Gλ.

Definition 5.6. Let λ be a partition. The stable Grothendieck polynomial Gλ is defined
by

Gλ =
ÿ

T

(´1)|T |´|λ|xT

where T ranges over the semi-standard set-valued tableaux of shape λ and |T | is the
number of entries in T .

Remark 5.7. ‚ If T is a Young tableau of shapeλ, then |T | = |λ| and (´1)|T |´|λ|xT =
xT . Since the set of Young tableaux of shape λ is a subset of the set of set-valued
Young tableaux of shape λ, then the terms of lowest degree in Gλ actually gives
sλ. We then have that

Gλ = sλ+ f (x),

where f (x) is a symmetric function of unbounded degree where each term has
degree greater than than |λ|.

Example 5.8. Let’s consider λ = (2,1). If each cell of the Young diagram of shape λ is
filled only with sets containing one element, then we have Young tableaux. Otherwise,
we have an infinite collection of set-valued tableaux, including the following tableaux.

1 1,2

2

1 1,2

3

2,6 7

7,8
.

Then
G(2,1) = s(2,1)´x2

1 x2
2´x2

1 x2x3 +x2x6x2
7 x8˘ . . .
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An interest to studying the Grothendieck polynomials is that that proving something
for Gλ automatically makes it possible to prove also for sλ.

Remark 5.9. The multiplication of Gλ’s corresponds to multiplication in the K -theory
ring of the Grassmanian.

5.2. Multiplication of stable Grothendieck polynomials. The generalization ot the the-
orem 4.12 will allows us to describe the multiplication of two stable Grothendieck poly-
nomials in the same way that we did for Schur fonctions. It gives us the following theo-
rem.

Theorem 5.10. Let λ be a pavable partition that has(µ,ν) as a 2-quotient. The set of set-
valued domino tableaux of shape λ and the set of pairs of set-valued Young tableaux of
shape (µ,ν) are in bijection.

Proof. To prove this theorem, we can simply describe the generalization of Γ, and of
Γ´1.

It is pretty straightforward to generalize Γ and Γ´1 to the K-theoretic approach.

The generalised algorithm, which we will denote by Γ1, sends a set-valued domino
tableau T of shape λ to a pair of set-valued Young tableaux (t1, t2) of shape (µ,ν), where
(µ,ν) is the 2-quotient of λ. It works exactly the same way as Γ, with labels in the cells
being sets of positive integers instead of positive integers.

In other words, in order to obtain t1 (resp. t2), we consider on each diagonal of T only
the labels of dominoes of type 1 (resp. of type 2). The diagonal reading of those labels
gives us the diagonal reading of t1 (resp. t2).

The tableaux obtained by the algorithm are set-valued tableaux by construction. Now
lets verify that these tableaux are actually set-valued Young tableaux or, in other words,
that rows are weakly increasing from left to right in consideration to the integer set order
Ÿ previously defined and that columns are increasing from top to bottom in consider-
ation to the integer set order.

Lets suppose that for each set filling T , we select a representative at random. By defini-
tion ofŸ, then the resulting tableau T 1 is a domino tableau. We can then apply Γ to T 1,
and we obtain a pair of Young tableaux (t 11, t 12). Since the type of dominoes in T and in
T 1 are the same, then we obtain corresponding results in (t1, t2) and (t 11, t 12).

Let a1i , j , a1i+1, j be the labels of two ajoining cells in t 11 (resp. t 12), then a1i , j É a1i+1, j . Since
the set representatives were chosen at rendom, then we must have that, in the cor-
responding cells in t1 (resp. t2), the set labels ai , j , ai+1, j are such that max(ai , j ) É
mi n(ai+1, j ).
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We then have that rows in t1 and t2 are weakly increasing from left to right in consider-
ation to the integer set orderŸ.

Similarly, let a1i , j , a1i , j+1 be the labels of two cells disposed one on top of the other in t 11
(resp. t 12), then a1i , j < a1i , j+1. Since the set representatives were chosen at random, then
we must have that, in the corresponding cells in t1 (resp. t2), the set labels ai , j , ai , j+1

are such that max(ai , j ) < mi n(ai , j+1).

We then have that columns in t1 and t2 are increasing from top to bottom in consider-
ation to the integer set orderŸ.

We then proved that the tableaux obtained through the generalized algorithm really are
set-valued Young tableaux. Also, since the dominos types of T 1 and T are the same, then
the shape of the tableaux t 11, t 12 obtained through Γ from T 1 by using representatives of
the set labels, and the shape of the tableaux t1, t2 obtained through Γ’ from T are the
same.

Therefore the pair of shapes (µ,ν) of (t1, t2) is the 2-quotient of λ, since it is the same
pair of shapes than for (t 11, t 12).

In conclusion, we have that Γ’ sends a set-valued domino tableau of shape λ to a pair
of set-valued Young tableaux of shape (µ,ν), where (µ,ν) is the 2-quotient of λ.

The proof for showing that Γ´1’ is the reverse of Γ’ is very similar and consists on de-
tailing how it works in comparison to Γ´1.

The translation into the language of symmetric functions gives us the following theo-
rem.

Theorem 5.11. Let λ be a partition with 2-quotient (µ, ν). Then

GµGν =
ÿ

T

(´1)|T |xT

where T runs over the set of all set-valued domino tableaux of shape λ, ans |T | is the
number of entries in T .

Proof. Lets consider a random monomial of GµGν constructed from the multiplication
of one monomial from Gµ, (´1)|t1|´|µ|x t1 , with t1 a set-valued Young tableau of shapeµ,
and one monomial from Gν, (´1)|t2|´|ν|x t2 , with t2 a set-valued Young tableau of shape
ν.

Then

(´1)|t1|´|µ|x t1 (´1)|t2|´|ν|x t2 = (´1)|t1|+|t2|´|µ|´|ν|x t1 x t2 .
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It is clear from the previous bijection that x t1 x t2 = xT where T a set-valued domino
tableau of shapeλ that has 2-quotient (µ,ν). Moreover, it is true for all set-valued Young
tableaux t1, t2 of respective shape µ and ν, and T the associated set-valued domino
tableau.

To determine what the sign of that term is, we have to remark that by the bijection, we
have |t1|+ |t2| = |T | and |µ|+ |ν| = |λ|, which gives us the following equation.

(´1)|t1|´|µ|x t1 (´1)|t2|´|ν|x t2 = (´1)|T |´|λ|xT .

Since λ is pavable, then |λ| is even and has no impact on the sign. Therefore, we have
the result.

6. WORD INSERTION THROUGH THE RSK ALGORITHM, HECKE INSERTION AND UNIQUE

RECTIFICATION TARGET

6.1. RSK algorithm and Knuth equivalence classes.

Definition 6.1. A word is an finite sequence of integers allowing repetitions. If any
present integer appears only once in the word, then we call that word a permutation.
A letter is an integer in the integer sequence that forms a word.

Definition 6.2. We say that the length of a word w is the number of letters in w , de-
noted |w | = n.

Definition 6.3. The Robinson-Schensted-Knuth algorithm, or RSK, is a well known
bijection between words and pairs consisting of a semi-standard tableau and a standard
tableau of the same shape that allows us to do an insertion procedure on the word to
obtain a Young tableau, while keeping track of the order the cells are created in gives the
standard tableau. It is possible to consult the Section 7.11 of [1] for a full description of
the algorithm.

We will simply give an idea and an example of the algorithm here.

Let’s say we want to insert a given word w . At every step i of the algorithm, the goal is
to insert the i th letter of the word w into the Young tableau obtained at the end of the
last step, in order to end with another Young tableau. This Young tableau is called the
insertion tableau of the step, usually denoted P (i ). For the first step, we insert the first
letter into the empty tableau.

The i th letter is inserted at the end of the first line of P (i ´1) only if it is greater than
or equal to all the entries on that line. Otherwise, it "bumps" the smallest greater entry
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that is on the first line, which is then inserted into the next row. This step ends when all
bumping procedures are done.

A second tableau, called the recording tableau, records where that last new cell was
created in P (i ), and gets a corresponding cell with entry i . This tableau is called the
recording tableau of the step, and is usually denoted Q(i ). This tableau therefore is a
standard Young tableau, which means that the entries of Q(i ) are {1,2,3, . . . i }.

The algorithm ends when all letters have been inserted, and the insertion and recording
tableaux of the word insertion are the ones obtained at the last step of the algorithm. If
|w | = n, then P (n) is the insertion tableau of w , and Q(n) is the recording tableau of w .

Example 6.4. Let w = 24132 be the word to be inserted. The insertion, with a view of
every step, gives us the following tableaux.

Step 1 : ∅Ð 2 P (1) = 2 Q(1) = 1

Step 2 : 2 Ð 4 P (2) = 2 4 Q(2) = 1 2

Step 3 : 2 4 Ð 1 P (3) = 1 4

2
Q(3) = 1 2

3

Step 4 : 1 4

2
Ð 3 P (4) = 1 3

2 4
Q(4) = 1 2

3 4

Step 5 : 1 3

2 4
Ð 2 P (5) = 1 2

2 3

4

Q(5) = 1 2

3 4

5

It is relatively easy to see that two words can happen to have the same insertion tableau.
For example, the reader can verify that 132 and 123 have the same insertion tableau.
One may wonder what conditions are needed for two permutations to have the same
insertion tableau.

Definition 6.5. We call the classes of permutations that have the same insertion tableaux
Knuth equivalence classes.

It has been shown that a Knuth equivalence class is stable under Knuth relations, which
are the following:

(1) acb» cab, with a < b < c,

(2) bac » bca, with a < b < c.
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Moreover, two permutations are Knuth equivalent if one can be obtained from the
other by a finite sequence of Knuth relations, and if and only if their insertion tableaux
coincide.

The Knuth equivalence classes are important as they take part in the proof of the Little-
Richardson rule, which gives us a more general description of the expansion of the mul-
tiplication of two Schur functions, as shown in the equation 1.

(1) sµsν =
ÿ

λ

cλµνsλ,

where cλµν is the Richardson-Littlewood coefficient, which is given a combinatorial de-
scription in the Littlewood-Richardson rule.

It is possible to read more on the history of the Littlewood-Richardson rule in Appendix
1 of [1].

6.2. Hecke insertion and K -Knuth equivalence classes. All this can be generalized to
K -theory through the Hecke insertion. This algorithm is a generalization of the RSK
algorithm, and allows to insert a word into a strictly inscreasing Young tableau, with a
recording tableau that is a set-valued standard tableau.

The next three sections are based on [4]. See [5] for more details about Hecke insertion,
and [6] for more details about K -theory, unique rectification targets and the use of the
Hecke insertion in generalizing the Littlewood-Richardson rule. See also [3] for more
details on the generalization of the Littlewood-Richardson rule.

Definition 6.6. The Hecke insertion of a word w is a generalization of the RSK insertion
of w . Let T be a tableau, and x be a letter to be inserted into a row R of T .

Lets first consider the case where x Ê y , @y PR.

(1) If x > y,@y P R, then we can add a cell containing x to the end of R and obtain a
valid strictly increasing tableau T ’. Then T ’ is the result of the insertion of x into
the row R of T .

When inserting the i th letter of w into T ends in this way, the recording tableau,
Q(i ), simply gets an extra box in that position with the entry i .

(2) If x = y , for y P R, then adding a cell containing x to the end of R does not give
a valid strictly increasing tableau T ’. Then x is “absorbed”into the last cell of R,
which already contained x. Then T is the result of the insertion of x into the row
R of T .
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When inserting the i th letter of w into T ends in this way, the recording tableau,
Q(i ), simply gets an extra entry i in the corresponding cell. Lets note that mi-
nor adjustments may be needed to keep Q(i ) a set-valued Young tableau, see
example.

Otherwise, let y be the smallest integer in R that is greater than x.

(1) If we can replace y with x and obtain a strictly increasing tableau, then x bumps
y and we insert y into the next row.

(2) If replacing y with x does not result in an increasing tableau, then x is “absorbed
into the cell of y (does not change R), and we insert y into the next row.

Example 6.7. Lets detail the steps in the Hecke insertion of 1334223.

Step 1 : ∅Ð 1 P (1) = 1 Q(1) = 1

Step 2 : 1 Ð 3 P (2) = 1 3 Q(2) = 1 2

Step 3 : 1 3 Ð 3 P (3) = 1 3 Q(3) = 1 2,3

3

Here the 3 is “absorbed”into the last cell, in order to keep P (3) a strictly increasing
tableau.

Step 4 : 1 3 Ð 4 P (4) = 1 3 4 Q(4) = 1 2,3 4

Step 5 : 1 3 4 Ð 2 P (5) = 1 2 4

3
Q(5) = 1 2,3 4

5

Step 6 : 1 2 4

3
Ð 2 P (6) = 1 2 4

3 4
Q(6) = 1 2,3 4

5 6

In RSK, the 2 would bump the 4, but replacing the 4by a 2 would not result in a strictly
increasing tableau. Therefore, here the 2 is absorbed into the last cell of the first line,
and a 4 is inserted into the next line.

Step 7 : 1 2 4

3 4
Ð 3 P (7) = 1 2 3

3 4
Q(7) = 1 2,3 4

5 6,7

The 3 bumps the 4, but adding a cell with a 4 at the end of the next line, as you would do
in RSK, does not result in a strictly increasing tableau. Therefore, here the 4 is absorbed
into the last cell of the second line.
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Example 6.8. Here is a example of a Hecke insertion where some adjustment is needed
in order to keep the recording tableau a set-valued standard Young tableau.

Step 1 : ∅Ð 2 P (1) = 2 Q(1) = 1

Step 2 : 2 Ð 1 P (2) = 1

2
Q(2) = 1

2

Step 3 : 1

2
Ð 1 P (3) = 1

2
Q(3) = 1

2,3

Here the 1 is “absorbed”into the last cell of the first row in order to keep P (3) a strictly

increasing tableau. This would give us the recording tableau Q(3) = 1,3

2
, which is not

a strictly increasing set-valued Young tableau. We then have to adjust the recording
tableau accordingly.

6.3. K -Knuth equivalence classes. In K -theory, we insert words instead of partitions,
which allows repetitions of letters. We would like to describe the classes of words getting
the same insertion tableaux under the Hecke insertion as we did with permutations
with the RSK insertion algorithm.

Let’s consider the K -Knuth relations, which are an extension of the Knuth relations:

(1) acb» cab, with a É b < c,

(2) bac » bca, with a < b É c,

(3) x » xx,

(4) x y x » y x y .

Definition 6.9. A class of words that is stable under the K -Knuth relations is called a
K -Knuth equivalence class.

We say that two words are K -Knuth equivalent if one can be obtained from the other
by a sequence of K -Knuth transformations.

Theorem 6.10. If w and w’ are two words such that their insertion tableaux are the same
under Hecke insertion, then w and w’ are K -Knuth equivalent.

Remark 6.11. The converse is false! Two words in the same K -Knuth equivalence class
can have different insertion tableaux under the Hecke insertion.
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Definition 6.12. Since it can be useful to know if two words are K -Knuth equivalent, it
would be interesting to have a description for K -Knuth equivalent classes that have a
unique insertion tableau under the Hecke insertion.

We say that an increasing tableau T is a unique rectification target if it is the only inser-
tion tableau under the Hecke insertion for the associated K -Knuth equivalence class.

[4] gives a few examples of ways to fill a Young diagram in order to ensure that the filled
increasing Young tableau obtained through that process is a unique rectification target.
We will discuss two specific ones.

Definition 6.13. A minimal tableau is a tableau in which each cell is filled with the
smallest positive integer that will make the filling a valid increasing tableau.

Example 6.14. T = 1 2 3 4 5

2 3 4 5

3 4

4

is a minimal tableau.

Proposition 6.15. Every minimal tableau is a unique rectification target.

Definition 6.16. A superstandard tableau is a standard tableau where the first row is
filled with with 1,2, . . . ,λ1, the second row with λ1 +1,λ1 +2, . . . ,λ1 +λ2, etc., where λ=
(λ1,λ2, . . .) is the shape of the tableau.

Example 6.17. T = 1 2 3 4 5

6 7 8 9

10 11

12

is a superstandard tableau.

Proposition 6.18. Every superstandard tableau is a unique rectification target.

7. COLORED PERMUTATION INSERTION INTO A DOMINO TABLEAU AND UNIQUE

RECTIFICATION DOMINO TABLEAU

7.1. Domino insertion. We would like to introduce insertion of words into domino
tableaux, as a generalization of the RSK algorithm. This requires certain precautions,
since in a bumping procedure, bumping a horizontal domino by a vertical domino, or
the reverse, would necessarely have to change the position of the other dominoes.
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Thomas Lam described an algorithm to insert colored permutations into domino tableaux
in [8], but we noted errors and typos both in the unpublished version ([7]) and pub-
lished version ([8]) of the paper. We will present in this section the corrected algo-
rithm.

Definition 7.1. A colored letter is a positive integer with possibly a bar over it. The
presence, or absence, of that bar indicate the choice of a sign for that letter. Putting a
bar over a letter is considered like appointing the sign "-" to the letter. Therefore colored
letters are sometimes called signed letters.

Definition 7.2. A colored word is a sequence of colored letters. A colored word is a
colored permutation if ever letter in the word appears only once.

Example 7.3. w = 13̄2̄46̄ is a colored permutation. w ’= 11̄2̄ is NOT a colored permuta-
tion, but it is a colored word.

We will now describe the corrected algorithm that allows us to insert a colored permu-
tation into a domino tableau. See [8] for more details and history about this algorithm.
Note that this is a correction of the algorithm found in that paper.

Notation 7.4. To describe the position of a cell c in a tableau, we will use the follow-
ing notation: (i , j ), where i indicates the column c is on, starting from the left, and j
indicates the line c is on, starting from the top. This corresponds to the coordinates of
a graph with origen at the top left corner of the tableau and with positive axis pointing
respectively to the right and down.

Example 7.5. Let’s consider the following tableau.

T = 1 1 2 4 4 4

2 2 3 5

4 5 6

The position of the cell containing 3 is given by (3,2).

Definition 7.6. This algorithm allows to insert a colored letter into a domino tableau,
and therefore to insert a colored permutation into a domino tableau.

Let D be a domino tableau, with no values repeated. Let i be a value that does not
appear in D and that we want to insert into D .

Let’s consider the subtableau A containing values that are less than i , and C , the skew
subtableau of D containing uniquely values greater than i . D should normally have
been splitted effectively into A and C .

We now construct a third tableau B from A by adding a domino to A with value i :
28



‚ If i is barred, we add a vertical domino in the first column of A with entry i .

‚ If i is not barred, we add an horizontal domino in the first line of A with entry i .

We will now add one by one the left over dominoes from C into B , one by one, following
this repositionning procedure.

Let’s consider the pair (B ,C ). They should be overlapping in at most one domino. Let λ
be the shape of B , and let j be the smallest entry in C . Let dom j be the corresponding
domino in C .

We now consider the intersection of the shape of B , λ, and dom j .

(1) If λXdom j =∅, then we set B ’= BYdom j and C ’=Czdom j .

(2) If λXdom j = (k, l ), a square in position (k, l ), then we add a domino with value
j to B such that the shape of the tableau B ’ obtained is λYdom j Y (k +1, l +1)
and we set C ’=Czdom j .

(3) If λXdom j = dom j , and dom j is horizontal, then we bump dom j to the next
row, and we set B ’ to be the union of B with an additional horizontal domino
with value j in the row bellow dom j . We set C ’=Czdom j .

(4) If λX dom j = dom j , and dom j is vertical, then we bump dom j to the next
column, and we set B ’ to be the union of B with an additional vertical domino
with value j in the column to the right of dom j . We set C ’=Czdom j .

This repositionning procedure is repeated with the couple (B ’,C ’), until the skew tableau
C becomes empty.

The resulting B tableau is the insertion tableau of i into D , which we denote D Ð i or
D Ð ī , depending if i was unbarred or barred.

If w = w1w2w3 . . . is a colored permutation with wi its colored letters, then we denote
P (i ) the insertion domino tableau of the colored permutation w1w2 . . . wi , with P (w)
the insertion domino tableau of w .

The shapes obtained at each step of the process are recorded by a standard domino
tableau that we denote Q(i ), with Q(w) the recording domino tableau of w .

Example 7.7. Hereafter, we will describe every step of the insertion of w = 54̄6̄2.
1) ∅Ð 5 : We insert a horizontal domino with value 5 to the empty tableau.

P (1) = 5 Q(1) = 1

2)
5

Ð 4̄ : We insert a vertical domino with value 4 to P (1).
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A =∅; B =
4

; C = 5
.

The shape of B intersects C in one cell, (1,1), then by rule (2), B ’=
4 5

and C ’=∅.

We then have that

P (2) =
4 5

Q(2) =
1

2

3)

4 5

Ð 6̄ : We insert a vertical domino with value 6 to P (2).

A =
4 5

; B =

4 5

6

; C =∅.

Then

P (3) =

4 5

6

Q(3) =

1

2

3

.

4)

4 5

6

Ð 2 : We insert a horizontal domino with value 2 to P (3).
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A =∅; B = 2
; C =.

4 5

6

.

The smallest entry in C is 4, and dom4Xλ= (1,1). By rule (2), we have that B ’=

2

4
,

and C ’=

5

6

.

The smallest entry in C ’ is 5, and dom5Xλ’= dom5. Since dom5 is vertical, by rule (4),

we bump it into the column to its right and we set B”=
2

4
5

, and C ”=
6

.

The smallest entry in C ” is 6, and dom6Xλ”=∅. By rule (1), we then have that B”’=
2

4
5

6

and C ”’=∅.

We then have that

P (4) =

2

4
5

6

Q(4) =

1

2

3

4

.

Remark 7.8. It is possible to describe the inverse algorithm allowing to retrace what
colored permutation w was inserted from the pair of same shape domino tableaux
(P (w),Q(w)). However we lack time and space to do so here.
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7.2. Domino "Hecke" insertion, domino insertion classes and unique rectification
domino. After studying RSK insertion and Hecke insertion, we wondered if it would be
possible to have an equivalence of Hecke insertion for domino tableaux. This would
allow us to insert colored words into domino tableau instead of being restricted to col-
ored permutations. However, as it turns out, this is far from trivial. It is easy to visualise
that, as in Hecke insertion, it is easy for a cell to be "absorbed" by another cell if they
have the same value or in a bumping procedure. It is not so evident to see how a vertical
domino can be absorbed by a horizontal domino, and vice-versa. This question needs
further enquirery, and probably larger modifications than between RSK and the Hecke
insertions.

We then wondered if we could put together the domino insertion algorithm and the
Knuth equivalence classes and the bijection Γ that sends a domino tableau to a pair of
Young tableaux, that we described previously. We first realised we could send a colored
permutation onto a domino tableau using another bijection. We start with a pair of
permutations, representing respectively the barred and unbarred letters of a colored
permutation. We can send them onto their Young tableaux via the RSK insertion, and
then we can merge those two Young tableaux into a domino tableau with the algorithm
Γ´1.

We wondered if the domino tableau obtained through this procedure would correspond
to the one obtained through the domino insertion algorithm of the colored permuta-
tion. We realised however that this domino tableau is not at all the same than the one
obtained through the insertion process, either with the shape or position of the domi-
noes. The reader can convince himself (or herself) by trying with the word 5̄2̄61347̄ for
the two techniques. Therefore, there is not a bijection between the insertion of colored
permutations and the bijection described previously.

We then wondered if we could describe a domino equivalence to unique rectification
targets through this bijection, and here is what we found.

Definition 7.9. We define Knuth equivalence classes of colored permutations by the
class of colored permutations stable through Knuth transformations of the unbarred
letters and Knuth transformations of the barred letters, without considering the posi-
tions of the barred letters in relation to the unbarred letters and vice-versa.

Definition 7.10. Let λ be a pavable partition. A minimal domino tableau of shape λ
is a filling of a paving of λ such that each cell has the smallest entry possible for the
domino tableau to be strictly increasing.

There are not many ways to verify that a Young tableau is a unique rectification target.
There are a few techniques that are described in [4], however we were not able to prove

32



that a minimal domino tableau splits into two unique restification targets under the Γ
algorithm.

Definition 7.11. Let λ be a pavable partition, and D , a paving of this partition. We can
split this paving into two Young diagrams of shape (µ,ν), where (µ,ν) is the 2-quotient
of λ, by using the Γ algorithm. We can fill both these two Young diagrams in order to
make them unique rectification targets, either making them minimal tableaux or su-
perstandar tableaux for example. When we merge these two Young tableaux together
by using the Γ´1 algorithm, the domino tableau that we get is the only domino tableau
associated to the Knuth equivalence class of its filling. We call this a unique rectifica-
tion domino.

Proposition 7.12. For any domino shape, it is possible to find a filling of that domino
shape so that the Knuth class of colored permutations associated to the filling only has
one domino tableau.

Proof. Lets remember that Γ is a bijection, that unique rectification targets are asso-
ciated to a Knuth equivalence class that has a unique insertion tableau under Hecke
insertion, and that Knuth equivalence classes of colored permutation are simply the
pair of two Knuth equivalence classes put together. It is then pretty straightforward to
see how a domino tableau constructed using the process previously is the only domino
tableau associated to the Knuth equivalence class of its filling.

It is also pretty straightforward to see why it is always possible to find a filling for any
given domino shape, simply by using the procedure previously described.
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8. CONCLUSION

Studying symmetric functions, Young tableaux, domino tableaux and their K-theoretic
equivalents allowed me to discover a new branch of combinatorics. I appreciated par-
ticipating to the CRM summer school week about symmetric functions. I learned enour-
mously during thes last three weeks. I loved sharing this new knowledge to two distinct
groups of students, one during the Summer student seminar of the LaCIM, and once
to the Canadian Undergraduate Mathematics Conference. I then presented two differ-
ent talks introducing the symmetric functions from a combinatorial point of view. This
experience has been great.

It would be interesting to pursue the reserch of the questions left without answers dur-
ing the stage, of which some are noted in the last section of this report.

Remerciements. I would like to thank the Laboratoire de combinatoire et d’informatique
mathématique (LACIM), the Institut des sciences mathématiques (ISM), as well as my
two stage directors for the summer, Rebeccas Patrias (post-doctoral researcher at UQAM)
and Hugh Thomas (professor at UQAM) for their support, their enthusiasm, their em-
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